
Disciplina Token Contract Audit

This smart contract audit was prepared by Quantstamp, the protocol for securing

smart contracts.

This security audit report follows a generic template. Future Quantstamp reports will

follow a similar template and they will be fully generated by automated tools.

Disciplina Token Contract Audit | 1

Overall Assessment

The Disciplina token makes heavy use of pre-existing library contracts,

specifically from OpenZeppelin. As Disciplina token is ERC20-compatible, it does

exhibit the “standard” ERC20 race condition between approve and

 transferFrom (mitigated by increase / decreaseApproval).

Furthermore, it features the centralization of power. While not a vulnerability, if

the contract owner's private key is compromised, then the following issues may

arise:

• arbitrary token minting,

• adding/removing minting allowance to/from arbitrary addresses,

• finishing the minting process prematurely.

As the Disciplina team explained, they favor this design due to its flexibility. As

the token contract is meant for the pre-sale stage only, this centralization of

power is viewed as a temporary aspect and bears low risk of attack.

Beyond those mentioned above, Quantstamp had no additional findings of

potential vulnerabilities at the time of analysis.

Methodology

The review was conducted during 2018-June-22 through 2018-June-26 by the

Quantstamp team, which included senior engineers Alex Murashkin, Martin

Derka, and Kacper Bak.

Their procedure can be summarized as follows:

1. Code review

a. Review of the specification

b. Manual review of code

c. Comparison to specification

2. Testing and automated analysis

a. Test coverage analysis

b. Symbolic execution (automated code path evaluation)

3. Best-practices review

4. Itemize recommendations

ERC20-based token contractType

Architecture Review, Functional Testing, Computer-

aided Verification, Manual Review

Methods

3Consultants

Solidity + JavaScriptLanguage

5 daysTimeline

Executive Summary

Quantstamp helps to secure blockchain applications such as smart contracts.

We are developing a new protocol for smart contract verification, performing

professional audits and consultations, and developing security tools. Quantstamp

also has expertise in application security and secure software development.

Our understanding of the specification was based on

the following documentation:

• Disciplina Whitepaper

• DISCIPLINA blockchain platform: Monetary policy

We also elicited some of the implicit requirements from

Disciplina team through private communication

channels.

Specification

The following source code was reviewed during the audit:Source Code

Repository Commit

contracts ed864b7

5Total Issues

0High Risk Issues

0Medium Risk Issues

2Low Risk Issues

3Informal Risk Issues

5 issues

Severity Categories

Informal The issue does not post an immediate risk, but is relevant
to security best practices or Defence in Depth.

The risk is relatively small or is not a risk the client has
indicated is important.

Individual user’s information is at risk, exploitation would
be detrimental for the client’s reputation, moderate
financial impact.

Large numbers of users impacted, catastrophic for client’s
reputation, or serious financial implications.

Low

Medium

High

https://www.quantstamp.com/
https://disciplina.io/WhitePaper_eng.pdf
https://disciplina.io/mp.pdf
https://github.com/DisciplinaOU/disciplina-token/tree/master/contracts
https://github.com/DisciplinaOU/disciplina-token/commit/ed864b7bc42763d9275d58b738133adbfd51dcb0

Disciplina Token Contract Audit | 2

./node_modules/.bin/solidity-coverage

Quantstamp's objective was to evaluate the Disciplina ERC20 based contract

repository for security-related issues, code quality, and adherence to best-

practices.

Possible issues include (but are not limited to):

• Transaction-ordering dependence

• Timestamp dependence

• Mishandled exceptions and call stack limits

• Unsafe external calls

• Integer overflow / underflow

• Number rounding errors

• Reentrancy and cross-function vulnerabilities

• Denial of service / logical oversights

Toolset

The below notes outline the setup and steps that were performed.

Testing setup:

• Truffle v4.1.8

• Ganache v1.1.0

• solidity-coverage v0.5.0

• Oyente v0.2.7

• Mythril v0.17.9

Steps taken to run the full test suite:

• Installed the solidity-coverage tool: npm install --save-dev

 solidity-coverage.

• Ran the coverage tool: ./node_modules/.bin/solidity-coverage.

• Installed the mythril tool from Pypi: pip3 install mythril.

• Ran the mythril tool: myth -x /contracts/truffle/contracts/.

• Installed the Oyente tool from Docker: docker pull luongnguyen/oyente

 && docker run -i -t luongnguyen/oyente.

• Ran the Oyente tool: cd /oyente/oyente && python oyente.py -s

 Contract.sol.

Code Coverage

The file DisciplinaToken.sol features a 69.35% statement code coverage with

70.77% line coverage. This is due to the embedded SafeMath contracts that are

not tested. The DisciplinaToken contract itself starts on line 247 and appears to

be completely covered by tests. As the SafeMath libraries are currently

embedded using clone-and-own approach, Quantstamp recommends that they

are tested as well.

Clone-and-Own Approach to Using External Libraries

A comment in the code states that another token contract was used as a source.

From the development perspective, it is beneficial as it reduces the amount of

effort. However, from the security perspective, it involves some risks as the source

may not follow the best practices, may contain a security vulnerability, or may

include intentionally or unintentionally modified upstream libraries.

In this case, it appears that the source embeds contract interfaces and methods

from the OpenZeppelin library, and the Disciplina token contract inherently

benefits from it. However, as opposed to the clone-and-own approach, a good

industry practice is using the Truffle framework for managing library

dependencies. This eliminates the risk of the clone-and-own based approaches

yet allows for following best practices, such as, using libraries.

Allowance Double Spend Exploit

As it presently is constructed, the contract is vulnerable to the allowance double-

spend exploit, similarly to other ERC20 tokens.

The exploit (as described below) is mitigated through use of functions that

increase/decrease the allowance relative to its current value, such as

increaseApproval and decreaseApproval.

The following is a description of the exploit:

1. Alice allows Bob to transfer N amount of Alice's tokens (N>0) by calling

 the approve method on Token smart contract (passing Bob's address

 and N as method arguments)

2. After some time, Alice decides to change from N to M (M>0) the number

 of Alice's tokens Bob is allowed to transfer, so she calls the approve

 method again, this time passing Bob's address and M as method

 arguments

3. Bob notices Alice's second transaction before it was mined and quickly

 sends another transaction that calls the transferFrom method to transfer N

 Alice's tokens somewhere

4. If Bob's transaction will be executed before Alice's transaction, then Bob

 will successfully transfer N Alice's tokens and will gain an ability to transfer

 another M tokens

5. Before Alice notices any irregularities, Bob calls transferFrom method

 again, this time to transfer M Alice's tokens.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 69.35

69.35

69.35

50

50

72.73

72.73

72.73

50

70.77

70.77

70.77

...237,238,239 DisciplinaToken.sol

All files

Security Audit Evaluation

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol#L47-L50
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol#L47-L50

Disciplina Token Contract Audit | 3

Allowance Double Spend Exploit

Ultimately, Alice's attempt to change Bob's allowance from N to M (N>0 and

M>0) made it possible for Bob to transfer N+M of Alice's tokens, despite Alice's

intention of not allowing this amount.

Pending community agreement on an ERC standard that would protect against

this exploit, we recommend that developers of applications dependent on

approve / transferFrom should keep in mind that they have to set allowance to

0 first and verify if it was used before setting the new value. Teams who decide to

wait for such a standard should make these recommendations to application

developers who work with their token contract.

Allowing for Minting Both Old and New Amount in Case of Changing Allowance

Similar to the allowance double-spend exploit above, the contract allows an

account for minting both old and new amount of tokens in an edge case scenario

when the allowance is being changed simultaneously with minting the old

allowance. According to the team, “We have instructions that require the

administrator to first zero the amount (if it is not already equal to zero), and then

set the desired value. It is just an additional precaution against the attack similar

to erc-20 allowance attack.”, which mitigates the issue.

Centralization of Power

The smart contract does not put a restriction on the amount of tokens the owner

could authorize to mint. While the approximate supply cap is known, 95 000 000

DSCP, it is not enforced in the contract, thus contributors must trust that the

owner will mint the predefined number of tokens. According to the team, the

exact supply is not known due to variable bonus size at the private sale stage,

and the supply limit is to be enforced in the crowdsale contract. In addition, a

trusted token owner is one of the security assumptions made by the team.

Naming

Our recommendation is to keep function and event naming consistent. The

allowMint() function emits the event MintApproval. In the same vein, we

recommend renaming MintFinished to MintingFinished.

Adherence to Specification

With minimal written specification we were unable to judge to what degree the

code conforms to the specification. Private conversation with the Disciplina team

convinced us that the contract code implements the desired functionality within

the context of its intended usage.

Extensive Test Coverage

The contract benefits from extensive test coverage within the Truffle project,

checking for numerous security and logic flaws within.

Toolset Warnings

Symbolic execution (the Oyente tool) did not detect any vulnerabilities of types

Parity Multisig Bug 2, Transaction-Ordering Dependence (TOD), Callstack Depth

Attack, Timestamp Dependency, and Re-Entrancy Vulnerability.

Mythril tool has not detected any vulnerabilities of kinds Integer underflow,

Unprotected functions, Missing check on call return value, Re-entrancy, Multiple

sends in a single transaction, External call to untrusted contract, delegatecall

or callcode to untrusted contract, Timestamp dependence, Use of tx.origin,

Predictable RNG, Transaction order dependence, Use require() instead of

assert(), Use of deprecated functions, Detect tautologies.

Code Documentation

We noted that a majority of the functions were self-explanatory, and standard

documentation tags (such as @dev, @param, and @returns) were included.

Disciplina Token Contract Audit | 4

Truffle Test Results

Below are SHA256 file signatures of the relevant files reviewed in the audit.

 $ shasum -a 256 ./contracts/*

 e6c019c44873810de9cdc871f56178ccf2b951322179a70b2f86524dfb1e0414 ./contracts/DisciplinaToken.sol

 1cb2333ba7589af0731b50589a691930343afa45ff23d0cd61c3e6317bd6c33b ./contracts/Migrations.sol

Truffle Test Results

Contract: DisciplinaToken

 after token creation

 ✓ sender should be token owner

 minting finished

 when the token minting is not finished

 ✓ should return false

 when the token minting is finished

 ✓ should return true

 finish minting

 when the sender is the token owner

 when the token minting is not finished

 ✓ should finish token minting (48ms)

 ✓ should emit a mint finished event

 when the token minting is finished

 ✓ should revert the transaction

 when the sender is not the token owner

 ✓ should revert the transaction

 allow mint

 when the sender is the token owner

 when the token minting is not finished

 ✓ should emit a minting approval event (38ms)

 ✓ should set the minting allowance of the minter (68ms)

 if called multiple times

 ✓ should set the minting allowance of the minter (89ms)

 when the token minting is finished

 ✓ should revert the transaction

 when the sender is not the token owner

 ✓ should revert the transaction

 mint

 when minter mints tokens

 less than or equal to his minting allowance

 when the minting is not finished

 ✓ should log minting event

 ✓ should log transfer event

 ✓ should increase total supply (55ms)

 ✓ should increase the balance of the beneficiary (52ms)

 ✓ should decrease the minting allowance of the minter

 when the minting is finished

 ✓ should revert the transaction

 more than his minting allowance

 ✓ should revert the transaction

 transfers

 transfer

 when the minting is finished

 ✓ should transfer tokens (43ms)

 when the minting is not finished

 ✓ should revert the transaction

 transferFrom

 when the minting is finished

 ✓ should transfer tokens (80ms)

 when the minting is not finished

 ✓ should revert the transaction

Appendix

Disciplina Token Contract Audit | 5

Purpose of Report

The scope of our review is limited to a review of Solidity code and only the source

code we note as being within the scope of our review within this report.

Cryptographic tokens are emergent technologies and carry with them high levels

of technical risk and uncertainty. The Solidity language itself remains under

development and is subject to unknown risks and flaws. The review does not

extend to the compiler layer, or any other areas beyond Solidity that could

present security risks.

The report is not an endorsement or indictment of any particular project or team,

and the report does not guarantee the security of any particular project. This

report does not consider, and should not be interpreted as considering or having

any bearing on, the potential economics of a token, token sale or any other

product, service or other asset.

No third party should rely on the reports in any way, including for the purpose of

making any decisions to buy or sell any token, product, service or other asset.

Specifically, for the avoidance of doubt, this report does not constitute

investment advice, is not intended to be relied upon as investment advice, is not

an endorsement of this project or team, and it is not a guarantee as to the

absolute security of the project.

Disclaimer

While Quantstamp delivers helpful but not-yet-perfect results, our contract

reports should be considered as one element in a more complete security

analysis. A warning in a contract report indicates a potential vulnerability, not

that a vulnerability is proven to exist.

Timeliness of Content

The content contained in the report is current as of the date appearing on the

report and is subject to change without notice, unless indicated otherwise by QTI;

however, QTI does not guarantee or warrant the accuracy, timeliness, or

completeness of any report you access using the internet or other means, and

assumes no obligation to update any information following publication.

Links to Other Websites

You may, through hypertext or other computer links, gain access to web sites

operated by persons other than Quantstamp Technologies Inc. (QTI). Such

hyperlinks are provided for your reference and convenience only, and are the

exclusive responsibility of such web sites' owners. You agree that QTI are not

responsible for the content or operation of such web sites, and that QTI shall

have no liability to you or any other person or entity for the use of third-party

web sites. Except as described below, a hyperlink from this web site to another

web site does not imply or mean that QTI endorses the content on that web site

or the operator or operations of that site. You are solely responsible for

determining the extent to which you may use any content at any other web sites

to which you link from the report. QTI assumes no responsibility for the use of

third-party software on the website and shall have no liability whatsoever to any

person or entity for the accuracy or completeness of any outcome generated by

such software.

Notice of Confidentiality

This report, including the content, data, and underlying methodologies, are

subject to the confidentiality and feedback provisions in your agreement with

Quantstamp. These material are not to be disclosed, extracted, copied, or

distributed except to the extent expressly authorized by Quantstamp.

Disclosure

	Disciplina 1
	Disciplina 2
	Disciplina 3
	Disciplina 4
	Disciplina 5

